Join BookBrowse today and get access to free books, our twice monthly digital magazine, and more.

Excerpt from The Universe In A Nutshell by Stephen Hawking, plus links to reviews, author biography & more

Summary |  Excerpt |  Reviews |  Readalikes |  Genres & Themes |  Author Bio

The Universe In A Nutshell

by Stephen Hawking

The Universe In A Nutshell by Stephen Hawking X
The Universe In A Nutshell by Stephen Hawking
  • Critics' Opinion:

    Readers' Opinion:

  • Published:
    Nov 2001, 224 pages

    Genres

  • Rate this book


Buy This Book

About this Book

Print Excerpt


To describe how quantum theory shapes time and space, it is helpful to introduce the idea of imaginary time. Imaginary time sounds like something from science fiction, but it is a well-defined mathematical concept: time measured in what are called imaginary numbers. One can think of ordinary real numbers such as 1, 2, -3.5, and so on as corresponding to positions on a line stretching from left to right: zero in the middle, positive real numbers on the right, and negative real numbers on the left.
Imaginary numbers can then be represented as corresponding to positions on a vertical line: zero is again in the middle, positive imaginary numbers plotted upward, and negative imaginary numbers plotted downward. Thus imaginary numbers can be thought of as a new kind of number at right angles to ordinary real numbers. Because they are a mathematical construct, they don't need a physical realization; one can't have an imaginary number of oranges or an imaginary credit card bill.

One might think this means that imaginary numbers are just a mathematical game having nothing to do with the real world. From the viewpoint of positivist philosophy, however, one cannot determine what is real. All one can do is find which mathematical models describe the universe we live in. It turns out that a mathematical model involving imaginary time predicts not only effects we have already observed but also effects we have not been able to measure yet nevertheless believe in for other reasons. So what is real and what is imaginary? Is the distinction just in our minds?

Einstein's classical (i.e., nonquantum) general theory of relativity combined real time and the three dimensions of space into a four-dimensional spacetime. But the real time direction was distinguished from the three spatial directions; the world line or history of an observer always increased in the real time direction (that is, time always moved from past to future), but it could increase or decrease in any of the three spatial directions. In other words, one could reverse direction in space, but not in time.

On the other hand, because imaginary time is at right angles to real time, it behaves like a fourth spatial direction. It can therefore have a much richer range of possibilities than the railroad track of ordinary real time, which can only have a beginning or an end or go around in circles. It is in this imaginary sense that time has a shape.

To see some of the possibilities, consider an imaginary time spacetime that is a sphere, like the surface of the Earth. Suppose that imaginary time was degrees of latitude. Then the history of the universe in imaginary time would begin at the South Pole. It would make no sense to ask, "What happened before the beginning?" Such times are simply not defined, any more than there are points south of the South Pole. The South Pole is a perfectly regular point of the Earth's surface, and the same laws hold there as at other points. This suggests that the beginning of the universe in imaginary time can be a regular point of spacetime, and that the same laws can hold at the beginning as in the rest of the universe. (The quantum origin and evolution of the universe will be discussed in the next chapter.)

Another possible behavior is illustrated by taking imaginary time to be degrees of longitude on the Earth. All the lines of longitude meet at the North and South Poles. Thus time stands still there, in the sense that an increase of imaginary time, or of degrees of longitude, leaves one in the same spot. This is very similar to the way that ordinary time appears to stand still on the horizon of a black hole. We have come to recognize that this standing still of real and imaginary time (either both stand still or neither does) means that the spacetime has a temperature, as I discovered for black holes.

Not only does a black hole have a temperature, it also behaves as if it has a quantity called entropy. The entropy is a measure of the number of internal states (ways it could be configured on the inside) that the black hole could have without looking any different to an outside observer, who can only observe its mass, rotation, and charge. This black hole entropy is given by a very simple formula I discovered in 1974. It equals the area of the horizon of the black hole: there is one bit of information about the internal state of the black hole for each fundamental unit of area of the horizon. This shows that there is a deep connection between quantum gravity and thermodynamics, the science of heat (which includes the study of entropy). It also suggests that quantum gravity may exhibit what is called holography.

Excerpted from The Universe in a Nutshell by Stephen Hawking Copyright 2001 by Stephen Hawking. Excerpted by permission of Bantam, a division of Random House, Inc. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.

Membership Advantages
  • Reviews
  • "Beyond the Book" articles
  • Free books to read and review (US only)
  • Find books by time period, setting & theme
  • Read-alike suggestions by book and author
  • Book club discussions
  • and much more!
  • Just $45 for 12 months or $15 for 3 months.
  • More about membership!

Support BookBrowse

Join our inner reading circle, go ad-free and get way more!

Find out more


Top Picks

  • Book Jacket: The Wide Wide Sea
    The Wide Wide Sea
    by Hampton Sides
    By 1775, 48-year-old Captain James Cook had completed two highly successful voyages of discovery and...
  • Book Jacket
    Flight of the Wild Swan
    by Melissa Pritchard
    Florence Nightingale (1820–1910), known variously as the "Lady with the Lamp" or the...
  • Book Jacket: Says Who?
    Says Who?
    by Anne Curzan
    Ordinarily, upon sitting down to write a review of a guide to English language usage, I'd get myself...
  • Book Jacket: The Demon of Unrest
    The Demon of Unrest
    by Erik Larson
    In the aftermath of the 1860 presidential election, the divided United States began to collapse as ...

BookBrowse Book Club

Book Jacket
Romantic Comedy
by Curtis Sittenfeld
A comedy writer's stance on love shifts when a pop star challenges her assumptions in this witty and touching novel.

Members Recommend

  • Book Jacket

    The Flower Sisters
    by Michelle Collins Anderson

    From the new Fannie Flagg of the Ozarks, a richly-woven story of family, forgiveness, and reinvention.

  • Book Jacket

    Daughters of Shandong
    by Eve J. Chung

    Eve J. Chung's debut novel recounts a family's flight to Taiwan during China's Communist revolution.

Who Said...

Most of us who turn to any subject we love remember some morning or evening hour when...

Click Here to find out who said this, as well as discovering other famous literary quotes!

Wordplay

Solve this clue:

P t T R

and be entered to win..

Your guide toexceptional          books

BookBrowse seeks out and recommends the best in contemporary fiction and nonfiction—books that not only engage and entertain but also deepen our understanding of ourselves and the world around us.